• Normal distribution of data (which can be tested by using a normality test, such as the Shapiro-Wilk and Kolmogorov-Smirnov tests).
• Equality of variances (which can be tested by using the F test, the more robust Levene's test, Bartlett's test, or the Brown-Forsythe test).
• Samples may be independent or dependent, depending on the hypothesis and the type of samples:
o Independent samples are usually two randomly selected groups
o Dependent samples are either two groups matched on some variable (for example, age) or are the same people being tested twice (called repeated measures)
Since all calculations are done subject to the null hypothesis, it may be very difficult to come up with a reasonable null hypothesis that accounts for equal means in the presence of unequal variances. In the usual case, the null hypothesis is that the different treatments have no effect — this makes unequal variances untenable. In this case, one should forgo the ease of using this variant afforded by the statistical packages. See also Behrens–Fisher problem.
One scenario in which it would be plausible to have equal means but unequal variances is when the 'samples' represent repeated measurements of a single quantity, taken using two different methods. If systematic error is negligible (e.g. due to appropriate calibration) the effective population means for the two measurement methods are equal, but they may still have different levels of precision and hence different variances.
Determining type
For novices, the most difficult issue is often whether the samples are independent or dependent. Independent samples typically consist of two groups with no relationship. Dependent samples typically consist of a matched sample (or a "paired" sample) or one group that has been tested twice (repeated measures).
Dependent t-tests are also used for matched-paired samples, where two groups are matched on a particular variable. For example, if we examined the heights of men and women in a relationship, the two groups are matched on relationship status. This would call for a dependent t-test because it is a paired sample (one man paired with one woman). Alternatively, we might recruit 100 men and 100 women, with no relationship between any particular man and any particular woman; in this case we would use an independent samples test.
Another example of a matched sample would be to take two groups of students, match each student in one group with a student in the other group based on an achievement test result, then examine how much each student reads. An example pair might be two students that score 90 and 91 or two students that scored 45 and 40 on the same test. The hypothesis would be that students that did well on the test may or may not read more. Alternatively, we might recruit students with low scores and students with high scores in two groups and assess their reading amounts independently.
An example of a repeated measures t-test would be if one group were pre- and post-tested. (This example occurs in education quite frequently.) If a teacher wanted to examine the effect of a new set of textbooks on student achievement, (s)he could test the class at the beginning of the year (pretest) and at the end of the year (posttest). A dependent t-test would be used, treating the pretest and posttest as matched variables (matched by student).
No comments:
Post a Comment