Pearson's correlation coefficient is a parametric statistic and when distributions are not normal it may be less useful than non-parametric correlation methods, such as Chi-square, Point biserial correlation, Spearman's ρ, Kendall's τ, and Goodman and Kruskal's lambda. They are a little less powerful than parametric methods if the assumptions underlying the latter are met, but are less likely to give distorted results when the assumptions fail.
Other measures of dependence among random variables
The information given by a correlation coefficient is not enough to define the dependence structure between random variables. The correlation coefficient completely defines the dependence structure only in very particular cases, for example when the cumulative distribution functions are the multivariate normal distributions. (See diagram above.) In the case of elliptic distributions it characterizes the (hyper-)ellipses of equal density, however, it does not completely characterize the dependence structure (for example, the a multivariate t-distribution's degrees of freedom determine the level of tail dependence).
To get a measure for more general dependencies in the data (also nonlinear) it is better to use the correlation ratio which is able to detect almost any functional dependency, or the entropy-based mutual information/total correlation which is capable of detecting even more general dependencies. The latter are sometimes referred to as multi-moment correlation measures, in comparison to those that consider only 2nd moment (pairwise or quadratic) dependence.
The polychoric correlation is another correlation applied to ordinal data that aims to estimate the correlation between theorised latent variables.
One way to capture a more complete view of dependence structure is to consider a copula between them.
Search This Blog
Thursday, June 11, 2009
correlation coefficients
Non-parametric
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment